Source code for zensols.nlp.tok

"""Feature token and related base classes

"""
from __future__ import annotations
__author__ = 'Paul Landes'
from typing import (
    List, Tuple, Set, Iterable, Dict, Sequence,
    Union, Optional, Any, ClassVar, Type,
)
from dataclasses import dataclass, field
from functools import reduce
from itertools import chain
import sys
from io import TextIOBase
from frozendict import frozendict
from spacy.tokens.token import Token
from spacy.tokens.doc import Doc
from spacy.tokens.span import Span
from zensols.persist import PersistableContainer
from . import NLPError, MissingFeatureError, TextContainer, LexicalSpan


[docs] @dataclass class FeatureToken(PersistableContainer, TextContainer): """A container class for features about a token. Subclasses such as :class:`.SpacyFeatureToken` extracts only a subset of features from the heavy Spacy C data structures and is hard/expensive to pickle. Instances of this token class are almost always *detached*, meaning the underlying in memory data structures have been copied as pure Python types to facilitate serialization of spaCy tokens. **Feature note**: features :obj:`i`, :obj:`idx` and :obj:`i_sent` are always added to features tokens to be able to reconstruct sentences (see :meth:`.FeatureDocument.uncombine_sentences`), and alwyas included. """ _DICTABLE_WRITABLE_DESCENDANTS: ClassVar[bool] = True """Use write method.""" REQUIRED_FEATURE_IDS: ClassVar[Set[str]] = frozenset( 'i idx i_sent norm lexspan'.split()) """Features retained regardless of configuration for basic functionality. """ FEATURE_IDS_BY_TYPE: ClassVar[Dict[str, Set[str]]] = frozendict({ 'bool': frozenset(('is_space is_stop is_ent is_wh is_contraction ' + 'is_superlative is_pronoun').split()), 'int': frozenset(('i idx i_sent sent_i is_punctuation tag ' + 'ent ent_iob dep shape norm_len').split()), 'str': frozenset(('norm lemma_ tag_ pos_ ent_ ent_iob_ ' + 'dep_ shape_').split()), 'list': frozenset('children'.split()), 'object': frozenset('lexspan'.split())}) """Map of class type to set of feature IDs.""" TYPES_BY_FEATURE_ID: ClassVar[Dict[str, str]] = frozendict( chain.from_iterable( map(lambda itm: map(lambda f: (f, itm[0]), itm[1]), FEATURE_IDS_BY_TYPE.items()))) """A map of feature ID to string type. This is used by :meth:`.FeatureToken.write_attributes` to dump the type features. """ FEATURE_IDS: ClassVar[Set[str]] = frozenset( reduce(lambda res, x: res | x, FEATURE_IDS_BY_TYPE.values())) """All default available feature IDs.""" SKIP_COMPARE_FEATURE_IDS: ClassVar[Set[str]] = set() """A set of feature IDs to avoid comparing in :meth:`__eq__`.""" WRITABLE_FEATURE_IDS: ClassVar[Tuple[str, ...]] = tuple( ('text norm idx sent_i i i_sent tag pos ' + 'is_wh entity dep children').split()) """Feature IDs that are dumped on :meth:`write` and :meth:`write_attributes`. """ NONE: ClassVar[str] = '-<N>-' """Default string for *not a feature*, or missing features.""" i: int = field() """The index of the token within the parent document.""" idx: int = field() """The character offset of the token within the parent document.""" i_sent: int = field() """The index of the token within the parent sentence. The index of the token in the respective sentence. This is not to be confused with the index of the sentence to which the token belongs, which is :obj:`sent_i`. """ norm: str = field() """Normalized text, which is the text/orth or the named entity if tagged as a named entity. """ def __post_init__(self): super().__init__() self._detached_feature_ids = None
[docs] def detach(self, feature_ids: Set[str] = None, skip_missing: bool = False, cls: Type[FeatureToken] = None) -> FeatureToken: """Create a detected token (i.e. from spaCy artifacts). :param feature_ids: the features to write, which defaults to :obj:`FEATURE_IDS` :param skip_missing: whether to only keep ``feature_ids`` :param cls: the type of the new instance """ cls = FeatureToken if cls is None else cls if feature_ids is None: feature_ids = set(self.FEATURE_IDS) else: feature_ids = set(feature_ids) feature_ids.update(self.REQUIRED_FEATURE_IDS) feats: Dict[str, Any] = self.get_features(feature_ids, skip_missing) clone = FeatureToken.__new__(cls) clone.__dict__.update(feats) if hasattr(self, '_text'): clone.text = self._text if feature_ids is not None: clone._detached_feature_ids = feature_ids return clone
@property def is_detached(self) -> bool: """Whether this token has been detached.""" return self._detached_feature_ids is not None @property def default_detached_feature_ids(self) -> Optional[Set[str]]: """The default set of feature IDs used when cloning or detaching with :meth:`clone` or :meth:`detach`. """ return self._detached_feature_ids @default_detached_feature_ids.setter def default_detached_feature_ids(self, feature_ids: Set[str]): """The default set of feature IDs used when cloning or detaching with :meth:`clone` or :meth:`detach`. """ self._detached_feature_ids = feature_ids
[docs] def clone(self, cls: Type = None, **kwargs) -> FeatureToken: """Clone an instance of this token. :param cls: the type of the new instance :param kwargs: arguments to add to as attributes to the clone :return: the cloned instance of this instance """ clone = self.detach(self._detached_feature_ids, cls=cls) clone.__dict__.update(kwargs) return clone
@property def text(self) -> str: """The initial text before normalized by any :class:`.TokenNormalizer`. """ if hasattr(self, '_text'): return self._text else: return self.norm @text.setter def text(self, text: str): """The initial text before normalized by any :class:`.TokenNormalizer`. """ self._text = text @property def is_none(self) -> bool: """Return whether or not this token is represented as none or empty.""" return self._is_none(self.norm) @classmethod def _is_none(cls, targ: Any) -> bool: return targ is None or targ == cls.NONE or targ == 0
[docs] def get_feature(self, feature_id: str, expect: bool = True, check_none: bool = False, message: str = None) -> \ Optional[Any]: """Return a feature by the feature ID. :param feature_id: the ID of the feature to retrieve :param expect: whether to raise an error :param message: additional context to append to the error message :param check_none: whether to return the value even if it has an unset value such as :obj:`NONE` as determined by :meth:`is_none`, in which case ``None`` is returned :raises MissingFeatureError: if ``expect`` is ``True`` and the feature does not exist """ val: Any = None has_attr: bool = hasattr(self, feature_id) if not has_attr: if expect: raise MissingFeatureError(self, feature_id, message) else: val = getattr(self, feature_id) if check_none and self._is_none(val): val = None return val
[docs] def set_feature(self, feature_id: str, value: Any): """Set, or add if non-existant, a feature to this token instance. If the token has been detached, it will be added to the :obj:`default_detached_feature_ids`. :param feature_id: the ID of the feature to set :param value: the new or replaced value of the feature """ setattr(self, feature_id, value) if self._detached_feature_ids is not None: self._detached_feature_ids.add(feature_id)
[docs] def get_features(self, feature_ids: Iterable[str] = None, skip_missing: bool = False) -> Dict[str, Any]: """Get features as a :class:`dict`. :param feature_ids: the features to write, which defaults to :obj:`FEATURE_IDS` :param skip_missing: whether to only keep ``feature_ids`` """ feature_ids = self.FEATURE_IDS if feature_ids is None else feature_ids if skip_missing: feature_ids = filter(lambda fid: hasattr(self, fid), feature_ids) return {k: getattr(self, k) for k in feature_ids}
[docs] def split(self, positions: Iterable[int]) -> List[FeatureToken]: """Split on text normal index positions. This needs and updates the ``idx`` and ``lexspan`` atttributes. :param positions: 0-indexes into :obj:`norm` indicating where to split :return: new (cloned) tokens along the boundaries of ``positions`` """ splits: List[FeatureToken] = [] norms: List[str] = [] idx: int = self.idx start: int = 0 end: int for end in positions: norms.append((start, self.norm[start:end])) start = end norms.append((start, self.norm[start:])) norm: str for start, norm in norms: offset: int = idx + start split_tok = self.clone() split_tok.norm = norm split_tok.idx = offset split_tok.lexspan = LexicalSpan(offset, offset + len(norm)) splits.append(split_tok) return splits
def _from_dictable(self, recurse: bool, readable: bool, class_name_param: str = None) -> Dict[str, Any]: dct = {} for k, v in self.__dict__.items(): if not k.startswith('_'): dct[k] = self._from_object(v, recurse, readable) return dct
[docs] def to_vector(self, feature_ids: Sequence[str] = None) -> Iterable[str]: """Return an iterable of feature data. """ if feature_ids is None: feature_ids = set(self.__dict__.keys()) - \ {'_detached_feature_ids'} return map(lambda a: getattr(self, a), sorted(feature_ids))
[docs] def write_attributes(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_type: bool = True, feature_ids: Iterable[str] = None, inline: bool = False, include_none: bool = True): """Write feature attributes. :param depth: the starting indentation depth :param writer: the writer to dump the content of this writable :param include_type: if ``True`` write the type of value (if available) :param feature_ids: the features to write, which defaults to :obj:`WRITABLE_FEATURE_IDS` :param inline: whether to print attributes all on the same line """ if feature_ids is None: feature_ids = self._detached_feature_ids if feature_ids is None: feature_ids = self.WRITABLE_FEATURE_IDS dct = self.get_features(feature_ids, True) if 'text' in dct and dct['norm'] == dct['text']: del dct['text'] for i, k in enumerate(sorted(dct.keys())): val: str = dct[k] ptype: str = None if not include_none and self._is_none(val): continue if include_type: ptype = self.TYPES_BY_FEATURE_ID.get(k) if ptype is not None: ptype = f' ({ptype})' ptype = '' if ptype is None else ptype sout = f'{k}={val}{ptype}' if inline: if i == 0: writer.write(self._sp(depth)) else: writer.write(', ') writer.write(sout) else: self._write_line(sout, depth, writer) if inline: self._write_empty(writer)
[docs] def write(self, depth: int = 0, writer: TextIOBase = sys.stdout, include_type: bool = True, feature_ids: Iterable[str] = None, inline: bool = False): con = f'norm=<{self.norm}>' if self.text != self.norm: con += f' org=<{self.text}>' self._write_line(f'{self.__class__.__name__}: ' + con, depth, writer) self._write_line('attributes:', depth + 1, writer) self.write_attributes( depth + 2, writer, include_type=include_type, feature_ids=feature_ids, inline=inline)
def __eq__(self, other: FeatureToken) -> bool: if self is other: return True if self.i == other.i and self.idx == other.idx: a = dict(self.__dict__) b = dict(other.__dict__) del a['_detached_feature_ids'] del b['_detached_feature_ids'] for attr in self.SKIP_COMPARE_FEATURE_IDS: a.pop(attr, None) b.pop(attr, None) return a == b return False def __lt__(self, other: FeatureToken) -> int: return self.idx < other.idx def __hash__(self) -> int: return ((self.i + 1) * 13) + \ ((self.idx + 1) * 29) + \ ((self.i_sent + 1) * 71) def __str__(self) -> str: return TextContainer.__str__(self) def __repr__(self) -> str: return self.__str__() # speed up none compares by using interned NONE def __getstate__(self) -> Dict[str, Any]: state = super().__getstate__() if self.norm == self.NONE: del state['norm'] return state # speed up none compares by using interned NONE def __setstate__(self, state: Dict[str, Any]): if 'norm' not in state: state['norm'] = self.NONE super().__setstate__(state)
[docs] def long_repr(self) -> str: attrs = [] for s in 'norm lemma_ tag_ ent_'.split(): v = getattr(self, s) if hasattr(self, s) else None if v is not None: attrs.append(f'{s}: {v}') return ', '.join(attrs)
[docs] @dataclass(init=False) class SpacyFeatureToken(FeatureToken): """Contains and provides the same features as a spaCy :class:`~spacy.tokens.Token`. """ spacy_token: Union[Token, Span] = field(repr=False, compare=False) """The parsed spaCy token (or span if entity) this feature set is based. :see: :meth:`.FeatureDocument.spacy_doc` """
[docs] def __init__(self, spacy_token: Union[Token, Span], norm: str): self.spacy_token = spacy_token self.is_ent: bool = not isinstance(self.spacy_token, Token) self._doc: Doc = self.spacy_token.doc i = self.token.i idx = self.token.idx i_sent = self.token.i - self.token.sent.start self._text = spacy_token.orth_ super().__init__(i, idx, i_sent, norm)
def __getstate__(self): raise NLPError('Not persistable') @property def token(self) -> Token: """Return the SpaCy token. """ tok = self.spacy_token if isinstance(tok, Span): tok = self._doc[tok.start] return tok @property def is_wh(self) -> bool: """Return ``True`` if this is a WH word (i.e. what, where). """ return self.token.tag_.startswith('W') @property def is_stop(self) -> bool: """Return ``True`` if this is a stop word. """ return not self.is_ent and self.token.is_stop @property def is_punctuation(self) -> bool: """Return ``True`` if this is a punctuation (i.e. '?') token. """ return self.token.is_punct @property def is_pronoun(self) -> bool: """Return ``True`` if this is a pronoun (i.e. 'he') token. """ return False if self.is_ent else self.spacy_token.pos_ == 'PRON' @staticmethod def _is_apos(tok: Token) -> bool: """Return whether or not ``tok`` is an apostrophy (') symbol. :param tok: the token to copmare """ return (tok.orth != tok.lemma_) and (tok.orth_.find('\'') >= 0) @property def lemma_(self) -> str: """Return the string lemma or text of the named entitiy if tagged as a named entity. """ return self.spacy_token.orth_ if self.is_ent \ else self.spacy_token.lemma_ @property def is_contraction(self) -> bool: """Return ``True`` if this token is a contradiction. """ if self.is_ent: return False else: t = self.spacy_token if self._is_apos(t): return True else: doc = t.doc dl = len(doc) return ((t.i + 1) < dl) and self._is_apos(doc[t.i + 1]) @property def ent(self) -> int: """Return the entity numeric value or 0 if this is not an entity. """ return self.spacy_token.label if self.is_ent else 0 @property def ent_(self) -> str: """Return the entity string label or ``None`` if this token has no entity. """ return self.spacy_token.label_ if self.is_ent else self.NONE @property def ent_iob(self) -> int: """Return the entity IOB tag, which ``I`` for in, ```O`` for out, `B`` for begin. """ return self.token.ent_iob if self.is_ent else 0 @property def ent_iob_(self) -> str: """Return the entity IOB nominal index for :obj:``ent_iob``. """ return self.token.ent_iob_ if self.is_ent else 'O'
[docs] def conll_iob_(self) -> str: """Return the CoNLL formatted IOB tag, such as ``B-ORG`` for a beginning organization token. """ if not self.is_ent: return 'O' return f'{self.self.token.ent_iob_}-{self.token.ent_type_}'
@property def is_superlative(self) -> bool: """Return ``True`` if this token is the superlative. """ return self.token.tag_ == 'JJS' @property def is_space(self) -> bool: """Return ``True`` if this token is white space only. """ return self.token.is_space @property def sent_i(self) -> int: """The index of the sentence to which the token belongs. This is not to be confused with the index of the token in the respective sentence, which is :obj:`.FeatureToken.i_sent`. This attribute does not exist in a spaCy token, and was named as such to follow the naming conventions of their API. """ targ = self.i for six, sent in enumerate(self._doc.sents): for tok in sent: if tok.i == targ: return six @property def lexspan(self) -> LexicalSpan: """The document indexed lexical span using :obj:`idx`. """ return LexicalSpan.from_token(self.spacy_token) @property def tag(self) -> int: """Fine-grained part-of-speech text. """ return self.token.tag @property def tag_(self) -> str: """Fine-grained part-of-speech text. """ return self.token.tag_ @property def pos(self) -> int: """The simple UPOS part-of-speech tag. """ return self.token.pos @property def pos_(self) -> str: """The simple UPOS part-of-speech tag. """ return self.token.pos_ @property def shape(self) -> int: """Transform of the tokens’s string, to show orthographic features. For example, “Xxxx” or “d. """ return self.token.shape @property def shape_(self) -> str: """Transform of the tokens’s string, to show orthographic features. For example, “Xxxx” or “d. """ return self.token.shape_ @property def children(self): """A sequence of the token’s immediate syntactic children. """ return [c.i for c in self.token.children] @property def dep(self) -> int: """Syntactic dependency relation. """ return self.token.dep @property def dep_(self) -> str: """Syntactic dependency relation string representation. """ return self.token.dep_ @property def norm_len(self) -> int: """The length of the norm in characters.""" return len(self.norm) def __str__(self): if hasattr(self, 'spacy_token'): tokstr = self.spacy_token else: tokstr = self.norm return f'{tokstr} ({self.norm})'