zensols.deepnlp package¶
Subpackages¶
- zensols.deepnlp.classify package
- Submodules
- zensols.deepnlp.classify.domain module
- zensols.deepnlp.classify.facade module
ClassifyModelFacadeClassifyModelFacade.COUNTS_ATTRIBUTEClassifyModelFacade.DEPENDENCIES_ATTRIBUTEClassifyModelFacade.DEPENDENCY_EXPANDER_ATTRIBTEClassifyModelFacade.EMBEDDING_ATTRIBUTESClassifyModelFacade.ENUMS_ATTRIBUTEClassifyModelFacade.ENUM_EXPANDER_ATTRIBUTEClassifyModelFacade.FASTTEXT_CRAWL_300_EMBEDDINGClassifyModelFacade.FASTTEXT_NEWS_300_EMBEDDINGClassifyModelFacade.GLOVE_300_EMBEDDINGClassifyModelFacade.GLOVE_50_EMBEDDINGClassifyModelFacade.LANGUAGE_ATTRIBUTESClassifyModelFacade.LANGUAGE_FEATURE_MANAGER_NAMEClassifyModelFacade.LANGUAGE_MODEL_CONFIGClassifyModelFacade.STATS_ATTRIBUTEClassifyModelFacade.TRANSFORMER_FIXED_EMBEDDINGClassifyModelFacade.TRANSFORMER_TRAINBLE_EMBEDDINGClassifyModelFacade.WORD2VEC_300_EMBEDDINGClassifyModelFacade.__init__()ClassifyModelFacade.predict()
MultilabelClassifyModelFacadeTokenClassifyModelFacade
- zensols.deepnlp.classify.model module
- zensols.deepnlp.classify.multilabel module
- zensols.deepnlp.classify.pred module
ClassificationPredictionMapperClassificationPredictionMapper.__init__()ClassificationPredictionMapper.label_feature_idClassificationPredictionMapper.label_vectorizerClassificationPredictionMapper.map_results()ClassificationPredictionMapper.pred_attributeClassificationPredictionMapper.softmax_logit_attributeClassificationPredictionMapper.vec_manager
SequencePredictionMapper
- Module contents
- zensols.deepnlp.embed package
- Submodules
- zensols.deepnlp.embed.doc module
- zensols.deepnlp.embed.domain module
NoOpWordEmbedModelWordEmbedErrorWordEmbedModelWordEmbedModel.UNKNOWNWordEmbedModel.ZEROWordEmbedModel.__init__()WordEmbedModel.cacheWordEmbedModel.clear_cache()WordEmbedModel.deallocate()WordEmbedModel.get()WordEmbedModel.keyed_vectorsWordEmbedModel.keys()WordEmbedModel.lowercaseWordEmbedModel.matrixWordEmbedModel.model_idWordEmbedModel.nameWordEmbedModel.prime()WordEmbedModel.shapeWordEmbedModel.to_matrix()WordEmbedModel.unk_idxWordEmbedModel.vector_dimensionWordEmbedModel.vectorsWordEmbedModel.word2idx()WordEmbedModel.word2idx_or_unk()
WordVectorModel
- zensols.deepnlp.embed.fasttext module
- zensols.deepnlp.embed.glove module
- zensols.deepnlp.embed.word2vec module
- zensols.deepnlp.embed.wordtext module
- Module contents
- zensols.deepnlp.index package
- Submodules
- zensols.deepnlp.index.domain module
- zensols.deepnlp.index.lda module
- zensols.deepnlp.index.lsi module
LatentSemanticDocumentIndexerVectorizerLatentSemanticDocumentIndexerVectorizer.DESCRIPTIONLatentSemanticDocumentIndexerVectorizer.FEATURE_TYPELatentSemanticDocumentIndexerVectorizer.__init__()LatentSemanticDocumentIndexerVectorizer.componentsLatentSemanticDocumentIndexerVectorizer.iterationsLatentSemanticDocumentIndexerVectorizer.lsaLatentSemanticDocumentIndexerVectorizer.similarity()LatentSemanticDocumentIndexerVectorizer.vectorizerLatentSemanticDocumentIndexerVectorizer.vectorizer_params
- Module contents
- zensols.deepnlp.layer package
- Submodules
- zensols.deepnlp.layer.conv module
DeepConvolution1dDeepConvolution1dNetworkSettingsDeepConvolution1dNetworkSettings.__init__()DeepConvolution1dNetworkSettings.appliesDeepConvolution1dNetworkSettings.embedding_dimensionDeepConvolution1dNetworkSettings.get_module_class_name()DeepConvolution1dNetworkSettings.layer_factoriesDeepConvolution1dNetworkSettings.out_shapeDeepConvolution1dNetworkSettings.paddingDeepConvolution1dNetworkSettings.pool_paddingDeepConvolution1dNetworkSettings.pool_strideDeepConvolution1dNetworkSettings.pool_token_kernelDeepConvolution1dNetworkSettings.repeatsDeepConvolution1dNetworkSettings.strideDeepConvolution1dNetworkSettings.token_kernelDeepConvolution1dNetworkSettings.token_lengthDeepConvolution1dNetworkSettings.validate()DeepConvolution1dNetworkSettings.write()
- zensols.deepnlp.layer.embed module
EmbeddingLayerEmbeddingNetworkModuleEmbeddingNetworkModule.MODULE_NAMEEmbeddingNetworkModule.__init__()EmbeddingNetworkModule.embedding_dimensionEmbeddingNetworkModule.forward_document_features()EmbeddingNetworkModule.forward_embedding_features()EmbeddingNetworkModule.forward_token_features()EmbeddingNetworkModule.get_embedding_tensors()EmbeddingNetworkModule.vectorizer_by_name()
EmbeddingNetworkSettingsTrainableEmbeddingLayer
- zensols.deepnlp.layer.embrecurcrf module
- zensols.deepnlp.layer.wordvec module
- Module contents
- zensols.deepnlp.model package
- Submodules
- zensols.deepnlp.model.facade module
LanguageModelFacadeLanguageModelFacade.__init__()LanguageModelFacade.count_feature_idsLanguageModelFacade.doc_parserLanguageModelFacade.embeddingLanguageModelFacade.enum_feature_idsLanguageModelFacade.get_max_word_piece_len()LanguageModelFacade.get_transformer_vectorizer()LanguageModelFacade.language_attributesLanguageModelFacade.language_vectorizer_managerLanguageModelFacade.suppress_transformer_warnings
LanguageModelFacadeConfig
- zensols.deepnlp.model.sequence module
- Module contents
- zensols.deepnlp.transformer package
- Submodules
- zensols.deepnlp.transformer.domain module
TokenizedDocumentTokenizedDocument.__init__()TokenizedDocument.attention_maskTokenizedDocument.boundary_tokensTokenizedDocument.deallocate()TokenizedDocument.detach()TokenizedDocument.from_tensor()TokenizedDocument.get_wordpiece_count()TokenizedDocument.input_idsTokenizedDocument.is_emptyTokenizedDocument.map_to_word_pieces()TokenizedDocument.map_word_pieces()TokenizedDocument.offsetsTokenizedDocument.params()TokenizedDocument.shapeTokenizedDocument.tensorTokenizedDocument.token_type_idsTokenizedDocument.truncate()TokenizedDocument.write()
TokenizedFeatureDocument
- zensols.deepnlp.transformer.embed module
TransformerEmbeddingTransformerEmbedding.ALL_OUTPUTTransformerEmbedding.LAST_HIDDEN_STATE_OUTPUTTransformerEmbedding.POOLER_OUTPUTTransformerEmbedding.__init__()TransformerEmbedding.cacheTransformerEmbedding.modelTransformerEmbedding.nameTransformerEmbedding.outputTransformerEmbedding.output_attentionsTransformerEmbedding.resourceTransformerEmbedding.tokenize()TransformerEmbedding.tokenizerTransformerEmbedding.trainableTransformerEmbedding.transform()TransformerEmbedding.vector_dimension
- zensols.deepnlp.transformer.layer module
- zensols.deepnlp.transformer.mask module
- zensols.deepnlp.transformer.optimizer module
- zensols.deepnlp.transformer.pred module
- zensols.deepnlp.transformer.resource module
TransformerErrorTransformerResourceTransformerResource.__init__()TransformerResource.argsTransformerResource.cacheTransformerResource.cache_dirTransformerResource.cachedTransformerResource.casedTransformerResource.clear()TransformerResource.modelTransformerResource.model_argsTransformerResource.model_classTransformerResource.model_idTransformerResource.nameTransformerResource.tokenizerTransformerResource.tokenizer_argsTransformerResource.tokenizer_classTransformerResource.torch_configTransformerResource.trainable
- zensols.deepnlp.transformer.tokenizer module
TransformerDocumentTokenizerTransformerDocumentTokenizer.DEFAULT_PARAMSTransformerDocumentTokenizer.__init__()TransformerDocumentTokenizer.all_special_tokensTransformerDocumentTokenizer.feature_idTransformerDocumentTokenizer.id2tokTransformerDocumentTokenizer.paramsTransformerDocumentTokenizer.pretrained_tokenizerTransformerDocumentTokenizer.resourceTransformerDocumentTokenizer.token_max_lengthTransformerDocumentTokenizer.tokenize()TransformerDocumentTokenizer.word_piece_token_length
- zensols.deepnlp.transformer.vectorizers module
DocumentEmbeddingFeatureVectorizerDocumentMappedTransformerFeatureContextLabelTransformerFeatureVectorizerTransformerEmbeddingFeatureVectorizerTransformerExpanderFeatureContextTransformerExpanderFeatureVectorizerTransformerFeatureContextTransformerFeatureVectorizerTransformerMaskFeatureVectorizerTransformerNominalFeatureVectorizerTransformerNominalFeatureVectorizer.DESCRIPTIONTransformerNominalFeatureVectorizer.__init__()TransformerNominalFeatureVectorizer.annotations_attributeTransformerNominalFeatureVectorizer.delegate_feature_idTransformerNominalFeatureVectorizer.label_all_tokensTransformerNominalFeatureVectorizer.write()
- zensols.deepnlp.transformer.wordpiece module
CachingWordPieceFeatureDocumentFactoryWordPieceWordPieceDocumentDecoratorWordPieceFeatureDocumentWordPieceFeatureDocumentFactoryWordPieceFeatureDocumentFactory.__init__()WordPieceFeatureDocumentFactory.add_sent_embeddings()WordPieceFeatureDocumentFactory.add_token_embeddings()WordPieceFeatureDocumentFactory.create()WordPieceFeatureDocumentFactory.embed_modelWordPieceFeatureDocumentFactory.populate()WordPieceFeatureDocumentFactory.sent_embeddingsWordPieceFeatureDocumentFactory.token_embeddingsWordPieceFeatureDocumentFactory.tokenizer
WordPieceFeatureSentenceWordPieceFeatureSpanWordPieceFeatureTokenWordPieceFeatureToken.__init__()WordPieceFeatureToken.clone()WordPieceFeatureToken.copy_embedding()WordPieceFeatureToken.detach()WordPieceFeatureToken.embeddingWordPieceFeatureToken.indexesWordPieceFeatureToken.is_unknownWordPieceFeatureToken.token_embeddingWordPieceFeatureToken.word_iter()WordPieceFeatureToken.wordsWordPieceFeatureToken.write()
WordPieceFeatureVectorizerWordPieceFeatureVectorizer.DESCRIPTIONWordPieceFeatureVectorizer.FEATURE_TYPEWordPieceFeatureVectorizer.__init__()WordPieceFeatureVectorizer.accessWordPieceFeatureVectorizer.decode_embeddingWordPieceFeatureVectorizer.embed_modelWordPieceFeatureVectorizer.encode()WordPieceFeatureVectorizer.encode_transformedWordPieceFeatureVectorizer.fold_methodWordPieceFeatureVectorizer.word_piece_doc_factory
WordPieceTokenContainer
- Module contents
- zensols.deepnlp.vectorize package
- Submodules
- zensols.deepnlp.vectorize.embed module
- zensols.deepnlp.vectorize.manager module
FeatureDocumentVectorizerFeatureDocumentVectorizerManagerFeatureDocumentVectorizerManager.__init__()FeatureDocumentVectorizerManager.configured_spacy_vectorizersFeatureDocumentVectorizerManager.deallocate()FeatureDocumentVectorizerManager.doc_parserFeatureDocumentVectorizerManager.get_token_length()FeatureDocumentVectorizerManager.is_batch_token_lengthFeatureDocumentVectorizerManager.ordered_spacy_vectorizersFeatureDocumentVectorizerManager.parse()FeatureDocumentVectorizerManager.spacy_vectorizersFeatureDocumentVectorizerManager.token_feature_idsFeatureDocumentVectorizerManager.token_length
FoldingDocumentVectorizerMultiDocumentVectorizerTextFeatureType
- zensols.deepnlp.vectorize.spacy module
DependencyFeatureVectorizerNamedEntityRecognitionFeatureVectorizerPartOfSpeechFeatureVectorizerSpacyFeatureVectorizerSpacyFeatureVectorizer.__init__()SpacyFeatureVectorizer.descriptionSpacyFeatureVectorizer.dist()SpacyFeatureVectorizer.from_spacy()SpacyFeatureVectorizer.id_from_spacy()SpacyFeatureVectorizer.id_from_spacy_symbol()SpacyFeatureVectorizer.modelSpacyFeatureVectorizer.symbolsSpacyFeatureVectorizer.torch_configSpacyFeatureVectorizer.transform()SpacyFeatureVectorizer.write()
- zensols.deepnlp.vectorize.vectorizers module
CountEnumContainerFeatureVectorizerCountEnumContainerFeatureVectorizer.ATTR_EXP_METACountEnumContainerFeatureVectorizer.DESCRIPTIONCountEnumContainerFeatureVectorizer.FEATURE_TYPECountEnumContainerFeatureVectorizer.__init__()CountEnumContainerFeatureVectorizer.get_feature_counts()CountEnumContainerFeatureVectorizer.string_symbol_feature_idsCountEnumContainerFeatureVectorizer.to_symbols()
DecodedContainerFeatureVectorizerDepthFeatureDocumentVectorizerEnumContainerFeatureVectorizerMutualFeaturesContainerFeatureVectorizerOneHotEncodedFeatureDocumentVectorizerOverlappingFeatureDocumentVectorizerStatisticsFeatureDocumentVectorizerTokenEmbeddingFeatureVectorizerWordEmbeddingFeatureVectorizer
- Module contents
Submodules¶
zensols.deepnlp.cli module¶
Facade application implementations for NLP use.
- class zensols.deepnlp.cli.NLPClassifyFacadeModelApplication(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)[source]¶
Bases:
NLPFacadeModelApplicationA facade application for predicting text (for example sentiment classification tasks).
- class zensols.deepnlp.cli.NLPClassifyPackedModelApplication(unpacker)[source]¶
Bases:
objectClassifies data used a packed model. The
unpackeris used to install the model (if not already), then provide access to it. AModelFacadeis created from packaged model that is downloaded. The model then uses the facade’szensols.deeplearn.model.facade.ModelFacade.predict()method to output the predictions.- CLI_META = {'mnemonic_excludes': {'predict'}, 'mnemonic_overrides': {'write_model_info': 'modelstat', 'write_predictions': 'predict'}, 'option_excludes': {'unpacker'}, 'option_overrides': {'text_or_file': {'long_name': 'input', 'metavar': '<TEXT|FILE>'}, 'verbose': {'short_name': None}}}¶
- __init__(unpacker)¶
- property facade: ModelFacade¶
The packaged model’s facade.
-
unpacker:
ModelUnpacker¶ The model source.
- class zensols.deepnlp.cli.NLPFacadeBatchApplication(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)[source]¶
Bases:
FacadeApplicationA facade application for creating mini-batches for training.
- CLI_META = {'mnemonic_excludes': {'clear_cached_facade', 'create_facade', 'deallocate', 'get_cached_facade'}, 'mnemonic_overrides': {'dump_batches': 'dumpbatch'}, 'option_overrides': {'model_path': {'long_name': 'model', 'short_name': None}, 'out_format': {'long_name': 'format', 'short_name': 'f'}}}¶
Tell the command line app API to igonore subclass and client specific use case methods.
- __init__(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)¶
- class zensols.deepnlp.cli.NLPFacadeModelApplication(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)[source]¶
Bases:
FacadeApplicationA base class facade application for predicting tokens or text.
- CLI_META = {'mnemonic_excludes': {'clear_cached_facade', 'create_facade', 'deallocate', 'get_cached_facade'}, 'mnemonic_overrides': {'predict_text': 'predict'}, 'option_overrides': {'model_path': {'long_name': 'model', 'short_name': None}, 'out_format': {'long_name': 'format', 'short_name': 'f'}, 'verbose': {'long_name': 'verbose', 'short_name': None}}}¶
Tell the command line app API to igonore subclass and client specific use case methods.
- __init__(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)¶
- class zensols.deepnlp.cli.NLPSequenceClassifyFacadeModelApplication(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)[source]¶
Bases:
NLPFacadeModelApplicationA facade application for predicting tokens (for example NER tasks).
- __init__(config, facade_name='facade', model_path=None, config_factory_args=<factory>, config_overwrites=None, cache_global_facade=True, model_config_overwrites=None)¶
zensols.deepnlp.feature module¶
Stashes that parse feature documents.
- class zensols.deepnlp.feature.DataframeDocumentFeatureStash(delegate, config, name, chunk_size, workers, factory, vec_manager, document_limit=9223372036854775807, text_column='text', additional_columns=None)[source]¶
Bases:
DocumentFeatureStashCreates
FeatureDocumentinstances frompandas.Seriesrows from thepandas.DataFramestash values.- __init__(delegate, config, name, chunk_size, workers, factory, vec_manager, document_limit=9223372036854775807, text_column='text', additional_columns=None)¶
- class zensols.deepnlp.feature.DocumentFeatureStash(delegate, config, name, chunk_size, workers, factory, vec_manager, document_limit=9223372036854775807)[source]¶
Bases:
MultiProcessStashThis class parses natural language text in to
FeatureDocumentinstances in multiple sub processes.- ATTR_EXP_META = ('document_limit',)¶
- __init__(delegate, config, name, chunk_size, workers, factory, vec_manager, document_limit=9223372036854775807)¶
-
factory:
Stash¶ The stash that creates the
factory_datagiven to_parse_document().
- prime()[source]¶
If the delegate stash data does not exist, use this implementation to generate the data and process in children processes.
-
vec_manager:
FeatureDocumentVectorizerManager¶ Used to parse text in to
FeatureDocumentinstances.
zensols.deepnlp.score module¶
Module contents¶
Deep learning for NLP applications.