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Definition

To-do lists are short utterances meant to remind the original
author of a (usually concrete) task.

Example: “Buy milk”

Traditionally hand written and can include ordered steps. This

work focuses on un-ordered tasks.
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Introduction

e To-do lists are a popular medium for personal information
management.

e Tracked in electronic form with mobile and desktop
organizers—potential for software support for the
corresponding tasks by means of intelligent agents [1, 5].

e Work in the area of personal assistants for to-do tasks, but no
work focused on classifying user intention and information

extraction.

e Our methods perform well across two corpora that span

sub-domains. @



Terms

e Agent: The user intention for the to-do task. Think The
intelligent agent that resolves the task. Examples: buy, find
service, make appointment.

e Argument: Tokens in the utterance that help the agent
resolve the task. Examples: date=Friday June 3rd for the
task schedule meeting with Bob on Friday June 3rd.



Example

e “Buy swimsuit”: agent = buy; arguments: item = swimsuit
e “Call mom”: agent = call; arguments: contact = mom

e “Clean kitchen”: agent = service; arguments: item =
kitchen

e “Book opera tickets”: agent = find entertainment;

arguments: item = tickets
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Proprietary Corpus

e Corpus A was collected from an online publicly available

source.

e The corpus was created by annotating each to-do task with an

intelligent agent (I1A), a respective set of arguments and an

item argument category.

e Exceptions/errors were annotated for one of the following
reasons:

1
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. the to-do task itself is ambiguous

language of the to-do task is not English
illegal activity (i.e. “buy drugs”)
professional or work-related

meaningless language or gibberish



Proprietary Corpus Statistics

The Corpus A:

e Consisted of 3,169 annotations (one utterance per task).

e 1,342 were double annotated for inter-coder agreement
(cohen’s kappa).

e 3,169 divided into usable non-exceptions (1,690), and
unusable exceptions (1,479).



Public Corpus

e Publicly available dataset composed of 102 volunteer
contributed personal to-do tasks and 498 Trello to-do tasks
with A annotations.

e A subset of this data, including 68 volunteer and 218 Trello
scraped to-do tasks.
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Corpus Pre-processing
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Classification Process
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Tokenize and chunk the utterance.
Part of speech (POS) tag.

Run Semantic Role Labeler (SRL).
Run Named Entity Recognizer (NER).
Classify agent A with trained model.

Use argument model A to extract tokens.
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POS Tagger Model

Crucial part of speech (POS) tagger error: incorrectly tagging first
token of utterances as non-verbs.

Use following criteria to reassign the POS tag of the first token:

1. identified as a present tense verb tag in WordNet! [7] and

2. identified as not a color, for example “Green tea” with
“green” as a present tense verb.

"https://wordnet.princeton.edu
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POS Tagger Model

First token model increased POS tagging accuracy up to 91.4%
with an F-measure of 0.92 using the following features in addition
to the aforementioned the heuristic method:

1. the POS tag of the first token
2. if it is a sentence containing one word

3. if there exists NER token spans greater than 1
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Named Entity Recognition

e Named entity recognition (NER) provided additional context
for classification.

e Two sets of features were created using both the NER [4] and
the Stanford TokensRegex [2].

e Stanford TokensRegex [2] was enhanced to include a set of
static word lists generated from Wikidata [8], Open Product
Data [3], and the term lists

e The Wikidata lists were created with SPARQL queries (i.e.
lists of foods, clothes, names of movies/video games).

e NER lists used to create token based regular expressions. @
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Methods
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Agent Classification

Word count features

e Use the lemmatized form of the token for word count and
cosine similarity features.

e Let ¢y, = Count(w,a) be the count of word w for IA a and
C, be the set of word counts per IA such that ¢,, € C,.

e Limit C to contain the highest n frequency counts with
n = |C,| and hold n constant for all 1As as a hyper parameter.

Use the word count aggregation across C, as feature:

WG, =) c (1)

ceC,

Significant performance gains were achieved by increasing n from 5@
to 15 with the WC, feature.
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Agent Classification

Now we define a mapping from word to a word distribution over C
normalizing by the word frequency:

aw, ) = e 2)

For example, for the buy IA utterances “Purchase a shirt. Iron
shirt.”:

L4 Cbuy = {Cpurchase =1,¢s =1, Giron = 1, Cshirt = 2}

e qg(purchase,buy) = 1/4, q(a,buy) = 1/4, q(iron,buy) = 1/4,

q(shirt,buy) = 2/4. @
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Agent Classification

e Word vector cosine distance was calculated with
Word2vecJava [6].

e English Wikipedia pre-trained word vectors

e Sum over the token cosine similarity and weighting it with the
word frequency distribution from equation 2.

Use MLE across all agents A to create cosine similarity (CS)
feature for each sentence S:

CSs = argmax z z q(we, a) - cos(we, ws) (3)

aEA WcGCa WES @
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Argument Extraction

The model is trained first since it uses the argument classes as a

features from the argument model.

Feature Description

depend-label SRL dependency of parent
head-depend-label | Proposition Bank argument
list-type the term list attribute
ner-tag Stanford's NER entity
next-pos Wnt1 POS tag
next-tm-ner-tag wnt+1 NER list entity

pos w, POS tag

prev-pos wn—1 POS tag

stopword if w, a stop word
tm-ner-tag our NER list entity
token-index w, sentence O-index

Table 1: Argument features where w,, is the Nth word in the to-do task
utterance.



Results
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Agent Classification Results

‘ Id ‘ Classifier ‘ Features ‘ Precision ‘ Recall ‘ F1 ‘
| 1 [ Baseline | N/A | 0.10 031 [015 |
2 | LogitBoost verb + TNER 0.57 0.55 0.51
3 | NearestNeighbor | CS; + verb + TNER | 0.56 0.57 0.56
+ NER + WG,

4 | LogitBoost WC, + wverb + | 0.67 0.66 0.65
TNER

5 | LogitBoost CSs + verb + TNER | 0.68 0.67 0.67

6 | BayesNet CSs + verb + TNER | 0.67 0.66 0.65
+ NER + WG,

7 | LogitBoost CSs + verb + TNER | 0.70 0.70 0.69
+ NER + WG,

Table 2: Agent classification results.
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Argument Extraction Results

Agent Classifier F1

find-travel AdaBoostM1 0.64
calendar BayesNet 0.73
print DecisionTable | 0.79
find-activity J48 0.78
self-improvement J48 0.57
travel JRip 0.90
call KStar 0.88
plan-meal KStar 0.68
find-service NBTree 0.82
pay-bill-online NBTree 0.85
text-sms NBTree 0.83
search NNge 0.92
contact NaiveBayes 0.77
school-work NaiveBayes 0.59
email RandomForest | 0.75
service RandomForest | 0.72
buy[1] SMO 0.72
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Thank You!

Questions?
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