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Definition

To-do lists are short utterances meant to remind the original

author of a (usually concrete) task.

Example: “Buy milk”

Traditionally hand written and can include ordered steps. This

work focuses on un-ordered tasks.
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Introduction

• To-do lists are a popular medium for personal information

management.

• Tracked in electronic form with mobile and desktop

organizers–potential for software support for the

corresponding tasks by means of intelligent agents [1, 5].

• Work in the area of personal assistants for to-do tasks, but no

work focused on classifying user intention and information

extraction.

• Our methods perform well across two corpora that span

sub-domains.

4



Terms

• Agent: The user intention for the to-do task. Think The

intelligent agent that resolves the task. Examples: buy, find

service, make appointment.

• Argument: Tokens in the utterance that help the agent

resolve the task. Examples: date=Friday June 3rd for the

task schedule meeting with Bob on Friday June 3rd.
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Example

• “Buy swimsuit”: agent = buy; arguments: item = swimsuit

• “Call mom”: agent = call; arguments: contact = mom

• “Clean kitchen”: agent = service; arguments: item =

kitchen

• “Book opera tickets”: agent = find entertainment;

arguments: item = tickets
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Proprietary Corpus

• Corpus A was collected from an online publicly available

source.

• The corpus was created by annotating each to-do task with an

intelligent agent (IA), a respective set of arguments and an

item argument category.

• Exceptions/errors were annotated for one of the following
reasons:

1. the to-do task itself is ambiguous

2. language of the to-do task is not English

3. illegal activity (i.e. “buy drugs”)

4. professional or work-related

5. meaningless language or gibberish
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Proprietary Corpus Statistics

The Corpus A:

• Consisted of 3,169 annotations (one utterance per task).

• 1,342 were double annotated for inter-coder agreement

(cohen’s kappa).

• 3,169 divided into usable non-exceptions (1,690), and

unusable exceptions (1,479).
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Public Corpus

• Publicly available dataset composed of 102 volunteer

contributed personal to-do tasks and 498 Trello to-do tasks

with IA annotations.

• A subset of this data, including 68 volunteer and 218 Trello

scraped to-do tasks.
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Classification Process

1. Tokenize and chunk the utterance.

2. Part of speech (POS) tag.

3. Run Semantic Role Labeler (SRL).

4. Run Named Entity Recognizer (NER).

5. Classify agent A with trained model.

6. Use argument model A to extract tokens.
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POS Tagger Model

Crucial part of speech (POS) tagger error: incorrectly tagging first

token of utterances as non-verbs.

Use following criteria to reassign the POS tag of the first token:

1. identified as a present tense verb tag in WordNet1 [7] and

2. identified as not a color, for example “Green tea” with

“green” as a present tense verb.

1https://wordnet.princeton.edu

13

https://wordnet.princeton.edu
https://wordnet.princeton.edu


POS Tagger Model

First token model increased POS tagging accuracy up to 91.4%

with an F-measure of 0.92 using the following features in addition

to the aforementioned the heuristic method:

1. the POS tag of the first token

2. if it is a sentence containing one word

3. if there exists NER token spans greater than 1
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Named Entity Recognition

• Named entity recognition (NER) provided additional context

for classification.

• Two sets of features were created using both the NER [4] and

the Stanford TokensRegex [2].

• Stanford TokensRegex [2] was enhanced to include a set of

static word lists generated from Wikidata [8], Open Product

Data [3], and the term lists

• The Wikidata lists were created with SPARQL queries (i.e.

lists of foods, clothes, names of movies/video games).

• NER lists used to create token based regular expressions.
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Agent Classification

Word count features

• Use the lemmatized form of the token for word count and

cosine similarity features.

• Let cwa = Count(w, a) be the count of word w for IA a and

Ca be the set of word counts per IA such that cwa ∈ Ca.

• Limit C to contain the highest n frequency counts with

n = |Ca| and hold n constant for all IAs as a hyper parameter.

Use the word count aggregation across Ca as feature:

WCa =
∑
c∈Ca

c (1)

Significant performance gains were achieved by increasing n from 5

to 15 with the WCa feature.
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Agent Classification

Now we define a mapping from word to a word distribution over C

normalizing by the word frequency:

q(w , a) =
cwa
WCa

(2)

For example, for the buy IA utterances “Purchase a shirt. Iron

shirt.”:

• Cbuy = {cpurchase = 1, ca = 1, ciron = 1, cshirt = 2}
• q(purchase, buy) = 1/4, q(a, buy) = 1/4, q(iron, buy) = 1/4,

q(shirt, buy) = 2/4.
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Agent Classification

• Word vector cosine distance was calculated with

Word2vecJava [6].

• English Wikipedia pre-trained word vectors

• Sum over the token cosine similarity and weighting it with the

word frequency distribution from equation 2.

Use MLE across all agents A to create cosine similarity (CS)

feature for each sentence S :

CSs = argmax
a∈A

∑
wc∈Ca

∑
w∈S

q(wc , a) · cos(wc ,ws) (3)
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Argument Extraction

The model is trained first since it uses the argument classes as a

features from the argument model.

Feature Description

depend-label SRL dependency of parent

head-depend-label Proposition Bank argument

list-type the term list attribute

ner-tag Stanford’s NER entity

next-pos wn+1 POS tag

next-tm-ner-tag wn+1 NER list entity

pos wn POS tag

prev-pos wn−1 POS tag

stopword if wn a stop word

tm-ner-tag our NER list entity

token-index wn sentence 0-index

Table 1: Argument features where wn is the Nth word in the to-do task

utterance. 20
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Agent Classification Results

Id Classifier Features Precision Recall F1

1 Baseline N/A 0.10 0.31 0.15

2 LogitBoost verb + TNER 0.57 0.55 0.51

3 NearestNeighbor CSs + verb + TNER

+ NER + WCa

0.56 0.57 0.56

4 LogitBoost WCa + verb +

TNER

0.67 0.66 0.65

5 LogitBoost CSs + verb + TNER 0.68 0.67 0.67

6 BayesNet CSs + verb + TNER

+ NER + WCa

0.67 0.66 0.65

7 LogitBoost CSs + verb + TNER

+ NER + WCa

0.70 0.70 0.69

Table 2: Agent classification results.

22



Argument Extraction Results

Agent Classifier F1

find-travel AdaBoostM1 0.64

calendar BayesNet 0.73

print DecisionTable 0.79

find-activity J48 0.78

self-improvement J48 0.57

travel JRip 0.90

call KStar 0.88

plan-meal KStar 0.68

find-service NBTree 0.82

pay-bill-online NBTree 0.85

text-sms NBTree 0.83

search NNge 0.92

contact NaiveBayes 0.77

school-work NaiveBayes 0.59

email RandomForest 0.75

service RandomForest 0.72

buy[1] SMO 0.72

Table 3: Argument classification results.
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Thank You!

Questions?
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